The Duffing–Van der Pol Equation: Metamorphoses of Resonance Curves

نویسنده

  • J. Kyzioł
چکیده

We study dynamics of the Duffing–Van der Pol driven oscillator. Periodic steady-state solutions of the corresponding equation are determined within the Krylov-Bogoliubov-Mitropolsky approach to yield dependence of amplitude on forcing frequency as an implicit function, referred to as resonance curve or amplitude profile. Equations for singular points of resonance curves are solved exactly. We investigate metamorphoses of the computed amplitude profiles induced by changes of control parameters near singular points of these curves since qualitative changes of dynamics occur in neighbourhoods of singular points. More exactly, conditions for birth of resonances as well as for attractor crises are found. Bifurcation diagrams are computed to show good agreement with theoretical analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new algorithm for solving Van der Pol equation based on piecewise spectral Adomian decomposition ‎method‎

‎‎In this article‎, ‎a new method is introduced to give approximate solution to Van der Pol equation‎. ‎The proposed method is based on the combination of two different methods‎, ‎the spectral Adomian decomposition method (SADM) and piecewise method‎, ‎called the piecewise Adomian decomposition method (PSADM)‎. ‎The numerical results obtained from the proposed method show that this method is an...

متن کامل

Stochastic averaging and asymptotic behavior of the stochastic Duffing-van der Pol equation

Consider the stochastic Duffing-van der Pol equation ẍ = −ω2x− Ax −Bx2ẋ + εβẋ + εσxẆt with A ≥ 0 and B > 0. If β/2 + σ/8ω > 0 then for small enough ε > 0 the system (x, ẋ) is positive recurrent in R \ {0}. Let λ̃ε denote the top Lyapunov exponent for the linearization of this equation along trajectories. The main result asserts that λ̃ε ∼ ελ̃ as ε → 0 where λ̃ is the top Lyapunov exponent along tra...

متن کامل

Nonlinear Dynamics of a Periodically Driven Duffing Resonator Coupled to a Van der Pol Oscillator

We explore the dynamics of a periodically driven Duffing resonator coupled elastically to a van der Pol oscillator in the case of 1 : 1 internal resonance in the cases of weak and strong coupling. Whilst strong coupling leads to dominating synchronization, the weak coupling case leads to a multitude of complex behaviours. A two-time scales method is used to obtain the frequencyamplitude modulat...

متن کامل

Global analysis of the nonlinear Duffing-van der Pol type equation by a bifurcation theory and complete bifurcation groups method

The work is devoted to the systematic research of the periodic, quasi-periodic or chaotic oscillations and the coexistence in the nonlinear Duffing-van der Pol type dynamical systems describing processes and phenomena in nature or engineering. The achieved result is the elaboration of the basic theory for searching nonlinear effects based on the concepts of periodic skeletons, bifurcation theor...

متن کامل

Double Hopf bifurcation in delayed van der Pol-Duffing equation

In this paper, we study dynamics in delayed van der Pol–Duffing equation, with particular attention focused on nonresonant double Hopf bifurcation. Both multiple time scales and center manifold reduction methods are applied to obtain the normal forms near a double Hopf critical point. A comparison between these two methods is given to show their equivalence. Bifurcations are classified in a two...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015